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Background

Text-based image search is widely used when
people access online images

Direct results given by search engines are

‘panda”  usually unsatisfactory
* Ambiguity In texts
Google * Gap between textual and visual contents
oINg _ |
) S} Image Re-ranking: refine the text-based results
fhct by visual information
Retranking

Motivations
Graph-based methods are prevalent and effective

* |mage distance Is a corner stone of graph-based methods

* Distances based on low-level visual features suffer from
semantic gap

 Learn a high-level distance, adaptive to each query

Framework
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Methods

Learning anchor concepts
* Anchor concepts: most visually-coherent guery expansions

Algorithm 1 Concept Discovery through Query Expansion

Require: Query g, image collection Z,, surrounding texts 7. G’ an t d naa‘
Ensure: Learned concept set C; = {cg}:i‘i eatl
I: Imitialization: C, := 0, ri(w) := 0. .

2: for all images [ € 7, do V-coherent region
3:  Find the top K visual neighbors, denote as N'(1y)

4 Let W = {w}k }?:1 be the T most frequent words in the G'ant panda at

surrounding texts of N'(1y.). nb i

5:  forall wordS w;, € W(l;) do

6: rr(wi,) == rr(wi, ) + (T — ).

7:  end for

8: end for

9: Combine g and top M, words with largest r;(w) to form C,,.

Estimating Concept Correlations

* Anchor concepts are correlated to each other
« Estimated using Google Kernell®!

Cor("gilant panda"," panda suv")
= GoogleExp("glant panda")«GoogleExp(" panda suv")

Concept Projections

 Represent images using anchor concepts
 Encode each image using a M-dim probability vector
* Multi-class SVM Is used to perform encoding

ACG Distance
* Smooth (Incorporating concept correlations)

p1 = Z " W"p,

n=I()

= —aW) 'p

 Difference

dist*“% = |[(I — aW) ™ (p1 — p2)|1

Experiments

Evaluatlon Metric: NDCG DGGP:ZMZT“_B

Improvement over search engine results
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