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Abstract—Network pruning is an effective way to accelerate
Convolutional Neural Networks (CNNs). In recent years, struc-
tured pruning methods are proposed in favor of unstructured
methods as they have shown greater speedup in practical use.
Existing structured methods does pruning along two main di-
mensions: 3D-filter wise, i.e., remove a 3D-filter as a whole, and
filter-shape wise, i.e., remove a same position from all 3D-filters.
In this work, we propose a new group-wise 2D-filter pruning
approach that is orthogonal and complementary to the existing
methods. The proposed approach removes a portion of 2D-filters
from each 3D-filter according to the pruning patterns learned
from the data, and leads to compressed models that do not require
sophisticated implementation of convolution operations. A fine-
tuning process is followed to recover the accuracy. The knowledge
distillation (KD) framework is explored in the fine-tuning process
to improve the performance. We present our method for learning
the pruning pattens as well as the fine-tuning strategy based on
knowledge distillation. The proposed approach is validated on
two representative CNN models – ZF and VGG16, pre-trained on
ILSVRC12. Experimental results demonstrate the effectiveness
of our approach. In VGG16, we get even higher accuracy after
speeding-up the network by 4 times.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved
state-of-the-arts performance in a wide spectrum of computer
vision tasks, including object recognition [1][2][3][4], object
detection [5][6], object segmentation [7][8] and so on. Recent
researches on the design of CNN architectures advocated
the use of deep convolutional architectures that were often
comprised of tens to hundreds of convolutional layers. While
such a design choice continued to boost the CNNs’ accuracy,
it also dramatically increased the computation cost, which hin-
dered the deployment of CNN-based applications, especially
on embedded and mobile devices where computation power
was limited.

Recently, considerable research efforts have been de-
voted to accelerate CNNs, including low rank approxima-
tion [9][10][11][12], network pruning [13][14][15], sparsity
regularization [16][17][18], parameter quantization [19][20]
and network binarization [21][22]. Parameter quantization and
network binarization methods took advantages of low bit
width representation on weight, activation and gradient of

the network to accelerate it and reduce the memory burden.
These approaches’ performance on acceleration were highly
dependent on how much bit width they used and the hardware
platform they ran on. In low rank approximation method, the
weight tensors in the convolutional layers were decomposed
and approximated by a product of smaller factors. It could
gain practical speedups with commonly used convolution
implementations regardless of the hardware platforms.

Network pruning and sparsity regularization accelerate
CNNs by removing some connections from the models. Han
et al. proposed an approach that iterates between pruning
the weights and fine-tuning the pruned model, and obtained
a compressed AlexNet [1] with over 90% of the weights
pruned and no loss in accuracy [13][23]. However, since filters
after prunning were irregular and unstructured, one need to
implement sophisticated convolution operation to get actual
acceleration from the pruned model. To address this issue,
Lebedev & Lempitsky [17] proposed to add a group-sparsity
regularizer when conducting pruning. The pruned 3D-filters
shared the same shape though the new shape was irregular.
This approach could be viewed as changing the shape that all
3D-filter shared, so it was called shape-wise pruning. Apart
from adding some constrains, another approach to tackle it
was to use structured pruning methods like 3D-filter wise or
layer wise pruning [14][18][15]. Rather than single weight,
the pruning candidates of these methods were the whole 3D-
filter or the whole layer respectively. While layer wise pruning
could only be applied in networks with a “short-cut” design
like ResNet [4], 3D-filter wise pruning was a more general
method.

In previous works on 3D-filter wise pruning, the pruning
ratio was often limited, because removing 3D-filters would
consequently remove the corresponding feature-maps and
drastically reduce the layer’s representation power. In this
paper, we view 3D-filters as a set of 2D-filters, and propose
a group-wise 2D-filter pruning approach to compress 3D-
filters. More specifically, as shown in Fig 1, the 3D-filters
are equally divided into g (g > 1) groups (g = 2 in Fig
1). All 3D-filters within a same group are forced to have
the same pruning pattern (i.e., the indices of the channels
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Fig. 1: Group-wise pruning. We group the 3D-filters into two and prune each group’s input-channel by a ratio of 50%. The
network connection between the input and output channels before and after pruning is shown on the left. On the right, we
show the transform of the 3D-filters along the process. At the beginning, all the original 3D-filters are organized in a T × S
grid (In this case, T = 6, S = 6), each entry of which represents 2D-filter Wt(s, :, :), and each column represents a 3D-filter
consisting of S 2D-filters. The darkness of the entries indicates the corresponding 2D-filter’s importance in the network. After
grouping, the columns in the grid are shuffled as indicated by the index at the bottom. In this case, the 3D-filters are divided
into two groups, the first group consists of the 1-th, 4-th and 6-th 3D-filters and the rest are in the second group. After that,
the input channels in each group are pruned by a ratio of 50% according to its importance of the group (i.e., the corresponding
2D-filters’ importance). The remaining 2D-filters in each groups can then be re-orgnized into a new compact grid.

to be pruned in each 3D-filter). Pruning patterns of different
groups can be different. The pruning pattern between the input-
channels and output-channels are illustrated in Fig 1, also
shown is the shape of the 3D-filters along the pruning process.
By adjusting a shared pruning ratio p among all groups
(p = 0.5 in Fig 1), we are able to control the computation
cost of the resulting model. Our proposed approach enjoys a
number of advantages: (1) Since we prune 2D-filters instead
of 3D-filters, the finer pruning granularity leads to higher
sparsity (pruning ratio). (2) Our approach is able to retain
the number of feature-maps in each layer, and therefore better
approximate the output of original model. (3) The group-wise
pruning leads to highly structured filters, which is easy to
implement and bring practical acceleration. Since the large
convolution kernel in the original network is reduced to g small
kernels by our methods, convolution kernel in each group
perform convolution with a subset of the input-channels. The
convolution operation implemented within each group remains
the same as the original network.

Identifying groups of 3D-filters and the pruning pattern
for each group is crucial to our approach. To achieve this,
we first evaluate each 2D-filter’s importance with respect to
pruning. Inspired by the work in [24], which evaluated 3D-
filter’s importance based on the feature map it produced,
we proposed to evaluate 2D-filter’s importance based on the
intermediate feature map it produced. The intermediate feature

map’s sensitivity to the input as well as its impact on the
network’s final output are both taken into consideration. After
we obtain each single 2D-filter’s importance, all the 3D-filters
are clustered into several groups such that 3D-filters from the
same group share indices of their top important 2D-filters (see
Fig 1). Then, we can identify the least important indices within
each 3D-filter group, and remove the corresponding 2D-fitlers.
This process of identifying groups of 3D-filters and finding the
pruning pattern for each group is optimized in an alternative
way as illustrated in Algorithm1. After the groups and the
pruning patterns are determined, the actual pruning is only to
be carried out once.

To further improve the accuracy, we explore the Knowledge
Distillation (KD) [25] for fine-tuning the pruned model. We
show empirically that compared with the traditional fine-tuning
methods, KD could bring a consistent significant improvement.

In summary, our contributions are three-fold: (1) We pro-
pose to accelerate the computation of convolutional layers by
group-wise pruning the 2D-filters in each 3D-filter. The pruned
3D-filters are highly structured and easy to be translated
to actual speedups. (2) We design a method for estimating
the importance of 2D-filters, based on which 3D-filters are
grouped and pruned. (3) We present a practical and effective
strategy for fine-tuning the pruned networks, which further
imporves the accuracy of the pruned model.



II. METHOD

Our group-wise 2D-filter pruning approach consists of three
key steps. (1) 2D-filter evaluation, where 2D-filter’s impor-
tance are evaluated in the context of pruning; (2) Group-wise
pruning, where the 3D-filters are clustered into groups and
each group’s pruning pattern is determined; (3) Fine-tuning
with knowledge distillation (KD), where the pruned CNN
model is further fine-tuned with KD.

A. 2D-filter evaluation

The weights of a convolutional layer consists of a bunch
of 3D-filters Wt ∈ RC×N×M (1 ≤ t ≤ D) where D is
the number of 3D-filter and C,N,M denote the spatial di-
mensions of the 3D-filter. Each 3D-filter perform convolution
operation with the input feature-maps which can be viewed as
a 3D-tensor Z ∈ RC×U×V and produce an output feature-map
At ∈ RU×V (1 ≤ t ≤ D):

At(x, y) =
C∑

s=1

N∑
i=1

M∑
j=1

[Wt(s, i, j)·

Z(s, x+ i− N + 1

2
, y + j − M + 1

2
)] + bt

. (1)

To simplify the formulation, we assumed the input and
output feature map have the same size U ×V . In the equation
above, 1 ≤ x ≤ U , 1 ≤ y ≤ V , bt is the bias. While
a 3D-filter Wt ∈ RC×N×M consists of a set of 2D-filters
Wt(s, :, :) ∈ RN×M (1 ≤ s ≤ C), the 3D convolution as in
Eqn (1) can be viewed as a composition of 2D convolutions:

At(x, y) =

C∑
s=1

Hts(x, y) + bt, (2)

Hts(x, y) =

N∑
i=1

M∑
j=1

[Wt(s, i, j)·

Z(s, x+ i− N + 1

2
, y + j − M + 1

2
)],

(3)

where Hts ∈ RU×V is the 2D convolution output produced by
Wt(s, :, :). We evaluate the importance of 2D-filter Wt(s, :, :)
based on Hts. Hts is called “intermediate feature-map” in the
following contents.

In fact, intermediate feature-map Hts’s value depends on the
input of the network. We denote Hts as Hts(Xk) given the
input Xk, thus, Hts(Xk) changes for different Xk. Hts(Xk)’s
sensitivity to the changes of input Xk can be viewed as its
discrimination ability to different inputs. We use the variance
of the set Hts(Xk), k = (1, 2, . . . ,K) (K is the input case
number in our measurement, each element inside Hts(Xk) is
viewed as a variable) to measure the discrimination ability of
Hts(Xk) and denote it as Ets.

Ets =

K∑
k=1

U∑
u=1

V∑
v=1

(Hts(Xk)[u, v]− ats)2

K × U × V
,

(4)

ats =

K∑
k=1

U∑
u=1

V∑
v=1

Hts(Xk)[u, v]

K × U × V
, (5)

where ats is the mean value of set Hts(Xk), k =
(1, 2, . . . ,K). On the other hand, we want the pruning of
the intermediate feature map Hts bring minimal impact to
the output of network as we want to maintain the original
accuracy. A good way to measure the sensitivity to Hts of
network is the magnitude of the gradient of loss function with
respective to Hts. When we evaluate the importance of Hts,
we want to take both the sensitive of Hts with respect to the
inputs and the output’s sensitivity with respect to Hts into
account. Thus, we modify the Eqn (4) as:

Ets =
K∑

k=1

U∑
u=1

V∑
v=1
|f ′(t,s,u,v)(H(Xk))|(Hts(Xk)[u, v]− ats)2

K∑
k=1

U∑
u=1

V∑
v=1
|f ′(t,s,u,v)(H(Xk))|

,
(6)

where f(H(Xk)) denotes the network loss function,
f ′(t,s,u,v)(H(Xk)) is the gradient of f(H(Xk)) with re-
spect to Hts(Xk)[u, v]. After that, we attempt to further use
|f ′(t,s,u,v)(H(Xk))| to weight the computing of ats as :

ats =

K∑
k=1

U∑
u=1

V∑
v=1
|f ′(t,s,u,v)(H(Xk))|Hts(Xk)[u, v]

K∑
k=1

U∑
u=1

V∑
v=1
|f ′(t,s,u,v)(H(Xk))|

. (7)

The experiments show that with the new formulation, it can
get better performance.

While pruning filter Wt(s, :, :)(i.e., set Wt(s, :, :) = 0)
directly would have intermediate feature-map Hts result in
zero for any input Xk. As an example, if filter Wt(p, :, :) was
pruned, the corresponding output feature-map given input Xk

would result in

A
(p)
t (Xk) =

∑
s6=p

Hts(Xk) +Htp(Xk) + bt

=
∑
s6=p

Hts(Xk) + 0 + bt.

Thus, the network’s output would change a lot for input Xk

because most values in Htp(Xk) are far from 0. When we
compute Ets, ats is produced as a by-product. While ats is
the weighted mean value for Hts, it would be beneficial to
replace 0 by ats. After that, the new output feature-map is

A
(p)
t (Xk) =

∑
s6=p

Hts(Xk) + atp + bt =
∑
s6=p

Hts(Xk) + b̃t.

Thus, b̃t is the new bias for the 3D-filter. In fact, each time
we prune a 2D-filter Wt(s, :, :), ats would be added to the
corresponding bias bt.



B. Group-wise pruning

When 2D-filters are pruned without any constrains, we end
up with a set of 3D-filters with different shapes. However,
most efficient convolution operation implementations require
that all 3D-filters share the same shape.

To tackle this issue, we divide the 3D-filters into g groups,
the filters in the same group are required to be pruned at the
same channels, while 3D-filters from different groups are not
subject to this constrains. The process can be simply expressed
as group the 3D-filters first, and then prune the 2D-filters
in each group according to the selected input-channel. The
process is shown at Fig 1. Each 2D-filter is identified by (t, s),
our objective function is :

SE =
∑
t

∑
s

E(t, s), (t, s) ∈ P

s.t.|P | = D × C × p.
(8)

In Eqn (8), E(t, s) equal to Ets in Eqn (6). P denotes the
set consists of all the 2D-filter pruned. D × C is the total
2D-filter number, p denotes the pruning ratio we adopt.

While our goal is to find P that minimize SE and satisfy
the group constrain, an alternative optimization algorithm is
proposed for that purpose. In brief, we first give an initial
partition of 3D-filters by K-means, then each group is given a
pruning pattern that minimize SE under this partition. While
this is not the optimal solution because the partition of 3D-
filters is not optimized, we re-divided the 3D-filters into groups
based on the pruning pattern in each group which is the
optimal solution under the previous 3D-filter partition. After
that, we would give a new pruning pattern under the new
3D-filter partition again. This is a alternative optimization
process between dividing 3D-filters into groups and giving
each group’s pruning pattern. It will iterate for many times
until SE converged. The details are shown in Algorithm 1.

C. Fine-tuning with knowledge distillation

To improve the fine-tuning process, we explore the
knowledge distillation framework. We denote student model
as S and the teacher as T , Their softmax output can
be formulated as PS = softmax(AS(X,WS)) and
PT = softmax(AT (X,WT )) respectively. AS(X,WS) and
AT (X,WT ) are the inputs to the softmax layer in the network.
To make the output of the softmax contain more information,
KD introduce a soft version of softmax transform as :

P̃S = softmax(
AS(X,WS)

t
), (9)

P̃T = softmax(
AT (X,WT )

t
). (10)

A new parameter t is introduced to control the degree of
“soften” about the output. Then, the student network will be
trained with the soft teacher output together with the true
label denoted as y. The loss function of the framework can be
formulate as :

LKD = H(y, PS) + λH(P̃T , P̃S). (11)

Algorithm 1 group-wise pruning

Input:
E ∈ RD×C : E(t, s) denotes the importance of 2D-filter
Wt(s, :, :);
p: pruning ratio;
g: group number.

Output:
P : the set consists of 2D-filters pruned.

1: Initialize I(0)w and J (0)
w (w ∈ {1, 2, . . . , g}). Cluster vector

set {E(1, :), E(2, :), . . . , E(D, :)} into g groups by K-
means cluster algorithm, each vector refer to a 3D-filter,
thus we get an initial 3D-filter division. I(0)w denotes the
set consists of index of all 3D-filters in group w;
Then, we select the top C × p most unimportant input-
channel set J (0)

w for each group. The importance of s-th
input-channel in group w is

∑
t∈I(0)

w

E(t, s)

{I(0)1 , I
(0)
2 , . . . , I(0)g } ← {1, 2, . . . , D}

J (0)
w = subset({1, 2, . . . , C}), w ∈ {1, 2, . . . , g}

2: Repeat:
3: Update the prune pattern in each group, i.e., re-select the

most unimportant input-channels for each group.

{J (z)
1 , J

(z)
2 , . . . , J (z)

g } ← {J
(z−1)
1 , J

(z−1)
2 , . . . , J (z−1)

g }

4: Reassign the 3D-filters in groups(i.e., update Iz−1w to Izw)
based on J (z)

w :

{I(z)1 , I
(z)
2 , . . . , I(z)g } ← {I

(z−1)
1 , I

(z−1)
2 , . . . , I(z−1)g }

t ∈ I(z)w , w = argmin
w′

∑
s∈J(z)

w′

E(t, s)

5: Compute the total pruning loss:

SE(z) =

g∑
w=1

∑
t∈I(z)

w

∑
s∈J(z)

w

E(t, s)

6: Until SE(z) = SE(z−1)

7: Return P = {Wt(s, :, :)|t ∈ I
(z)
w , s ∈ J

(z)
w , w =

(1, 2, . . . , g)}

H is the cross-entropy function and λ is a parameter introduced
to balance the two items. In this paper, we call the first item
“hard-loss” and the second “soft-loss”.

A problem is whether to use dropout in fully-connected
layers. Dropout plays an indispensable role in reducing over-
fitting in big CNN models, but it will result in unstable
output of the network. Since we need to learn from the
teacher, its output must be consistent in different training stage.
Thus, dropout should be removed from teacher. As for the
student, our experiments showed that dropout would hurt the
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performance if only the soft-loss is applied in training. But if
we removed dropout when hard-loss was applied, the network
tended to be over-fitting. It seems that there is a conflict
whether to use dropout between soft-loss and hard-loss. When
we used both loss together as KD suggests, no matter whether
the dropout was used, the performance was lower comparing
to the case using soft-loss alone without dropout.

One explanation about dropout is that it learns an ensemble
because at every iteration only a sub-network is updated.
The efficiency of using an ensemble of models partly comes
from the diversity among the models. Compared with one-
hot label, using soft label to optimize the student reduced the
diversity of the ensemble in student as the soft label contains
richer information and is consistent when facing different sub-
networks in the ensemble, so that the diversity of ensemble
could potentially reduced. To overcome this problem, we
propose to introduce dropout in teacher so as to optimize sub-
networks of the student with the soft label generated by sub-
networks of the teacher. The teacher and the student share the
same sub-network structure by keeping the dropout nuerons
be the same for them at every iteration. By doing so, sub-
networks of student would have the same diversity as teacher.
An illustration of this step is shown in Fig 2.

III. EXPERIMENTS

All our experiments were conducted on the ILSVRC12
dataset which consists of over one million images in training
and validation set [26]. Because Alex-net [1] has “group
feature” 1 in some convolutional layers on its own, we chose
ZF-net [27] as our basic CNN model instead to ease our
exploration. In addition, we further verified our method on
a deeper and more widely used VGG16 network.

A. Pruning

The architecture of ZF-net is similar to Alex-net except for
two points, one is removing the group feature in all layers,
the other is replacing the 11× 11 kernel with 7× 7 kernel in
the first convolutional layer. The baseline ZF-net was trained
from scratch by ourselves with a top-1 accuracy of 60.87%.

1The 2,4,5-th convolutional layers in Alex-net have their 3D-filters divided
into two groups, each group perform convolution with half of the input
channels. It’s a special case of our approach.

Besides, the VGG16 was directly downloaded from Caffe’s
model zoo with a top-1 accuracy of 68.36%.

We performed group-wise 2D-filter pruning on all con-
volutional layers in the networks except for the first one.
First, we used our method to evaluate all the 2D-filter’s
importance based on 50,000 images sampled from ILSVRC12
training set (i.e., set K = 50, 000). The evaluation was
based on Eqn (6) and Eqn (7) could be obtained by a single
forward and backward propagation for each image. We then
simply remove the least important 2D-filters. We compared
our method with the magnitude based methods. Similar to the
3D-filter evaluation method proposed by Li et al. [15], we
used the sum of all magnitude of the 2D-filter’s weights as
their importance. We pruned the network based on the two
methods at varying pruning ratios and compared the accuracy
of the pruned networks. The results were shown in Fig 3 that
our method surpassed the magnitude base method significantly.

Based on the evaluation, we pruned the 2D-filters in each
3D-filter at a ratio of 0.5 according to their importance
without any constrains, which produced an unstructured sparse
network denoted as “ZF-pruned 0”. While it could not get
practical acceleration, we used it to explore KD in the early
experiments. For group-wise 2D-filter pruning, we used Al-
gorithm 1 to divide the 3D-filters into g groups and pruned
the 2D-filters in each group by a ratio of p. Compared with
pruning without group constrain like “ZF-pruned 0”, it would
result in a bigger pruning loss SE. When we set p = 0.5 and
g = 2 for group-wise pruning on ZF-net, over the iterations
of Algorithm 1, a relative magnitude of SE at each iteration
with respect to the SE of “ZF-pruned 0” (i.e., p = 0.5 and
no group constrain) was shown at Fig 4, which illustrated
that our algorithm was convergent. We experimented on three
configuration by the combination of p and g for ZF-net and
VGG16 respectively. The corresponding pruned networks’
architecture were shown at Table I. Note that for each input-
channels, if it was pruned in all groups, it became void in the
network and the corresponding 3D-filter in the previous layer
could be removed. This resulted in the changes in the number
of 3D-filter number in some layers.

B. Fine-tuning

We set the standard training process proposed in Alex-net
[1] as our baseline fine-tuning method. The learning rate was
set to η = 10−4. Over the training procedure, it decreased by
a factor of 10 every 10 epochs. Some of the pruned networks
in Table I were fine-tuned by the baseline method, results are
listed in Table II marked as “(hardloss only)”.

A key problem regarding knowledge distillation was how
to get soft label from teacher. A naive method was storing all
soft label getting from teacher as true label for student. The
disadvantage was that we could not use data augmentation
such as random crop on input image because it would make
the input of student inconsistent with that of teacher. The other
method was that the same augmented data was fed to both
teacher and student, then the soft label was generated online
by teacher and used as label for student. We compared the



TABLE I: Pruned network architecture for ZF-net and VGG16. All the layer entries are specified in a S-T format (S: 2D-filter
number in each 3D-filter, T: 3D-filter number in this layer). Sparsity is computed only for the convolutional layers.

models (p/g) conv1 conv2 conv3 conv4 conv5 sparsity
ZF-net 3-96 96-256 256-384 384-384 384-256 1.0

ZF-pruned 0 3-96 48-256 128-384 192-384 192-256 0.50
ZF-pruned-group-wise 1 (0.5/2) 3-76 48-184 128-265 192-326 192-256 0.41
ZF-pruned-group-wise 2 (0.5/1) 3-48 48-128 128-192 192-192 192-256 0.31
ZF-pruned-group-wise 3 (0.75/4) 3-60 24-168 64-232 96-300 96-256 0.19

VGG16
3-64 64-128 128-256 256-512 512-512

1.064-64 128-128 256-256 512-512 512-512
256-256 512-512 512-512

vgg16-pruned-group-wise 0 (0.5/1)
3-32 32-64 64-128 128-256 256-256

0.2532-32 64-64 128-128 256-256 256-256
128-128 256-256 256-512

vgg16-pruned-group-wise 1 (0.6/1)
3-26 26-52 52-103 103-205 205-205

0.2026-26 52-52 103-103 205-205 205-205
103-103 205-205 205-512

vgg16-pruned-group-wise 2 (0.7/1)
3-20 20-39 39-77 77-154 154-154

0.1220-20 39-39 77-77 154-154 154-154
77-77 154-154 154-512
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pruning all the four layers at the same ratio.
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Fig. 4: Relative pruning loss with grouping constraint in
Algorithm1. Relative pruning loss is the total pruning loss
with group constraint over the total pruning loss without group
constraint.

result of these two methods as shown in Fig 5a and adopted
the second method because of its higher performance.

In previous explorations, we found the best setting for
“temperature” t in Eqn (9) and Eqn (10) was 2. The gradients
produced by soft-loss had lower magnitude than the hard-loss
which enabled a higher learning rate η = 10−3. After that,
we used both the soft-loss and hard-loss at fine-tuning as KD,
the parameter λ that control the relevant influence between
the two items was set to 10. Then we found the issue about
“dropout” described in section II-C, the training process of
three different configuration of dropout, i.e., without dropout,
with dropout only in student and our new dropout method were
shown at Fig 2. Our new dropout approach had the leading
performance.

The fine-tuning results of all the pruned networks in Table
I by KD were summarized at Table II (without any mark).
Fine-tuning with KD had significantly better performance than
traditional approach for all pruned networks. Besides, we
attempted to train ZF-pruned-group-wise 2 from scratch with
the same training procedure of original ZF-net (marked as
“(training from scratch)” at Table II). It was surprising to find
that its accuracy is higher than fine-tuning ZF-pruned-group-
wise 2 in the traditional way, but still lower than our method.
We also tried to use KD to train it from scratch using the same
configuration (marked as “(KD from scratch)”) but got even
lower accuracy comparing with “(training from scratch)”.

Compared to 3D-filter pruning method proposed by Li et
al. [15], we got significantly better accuracy (-1.9% com-
pared to -3.2%) under the same speed-up ratio (3.13×). A
comparison with the latest low rank approximation meth-
ods on VGG16 were also conducted and listed at Table II.
vgg16-pruned-group-wise 0 and vgg16-pruned-group-wise 1
had comparable performances compared with [11] and [12]
respectively. For vgg16-pruned-group-wise 0, we got higher
accuracy than the original VGG16, it indicated that after
pruning the unimportant filters, the network got a better
generalization. Besides, vgg16-pruned-group-wise 2 exhibited
an amazing 10.04× speed-up with a comparable accuracy



TABLE II: Fine-tuning result of different networks. The weight-reduction and speed-up are computed concerning only the
convolutional layers.

methods weight-reduction speed-up accuracy
ZF

ZF-pruned 0 1.99 1.0 -0.3%
ZF-pruned 0 (hardloss only) 1.99 1.0 -1.1%

ZF-pruned-group-wise 1 2.41 2.24 -1.1%
ZF-pruned-group-wise 2 3.21 3.13 -1.9%

ZF-pruned-group-wise 2 (hardloss only) 3.21 3.13 -3.0%
ZF-pruned-group-wise 2 (training from scratch) 3.21 3.13 -2.6%

ZF-pruned-group-wise 2 (KD from scratch) 3.21 3.13 -3.4%
ZF-pruned-group-wise 3 5.15 4.17 -3.1%

Li et al.[15]: 3D-filter pruning 3.21 3.13 -3.2%
VGG16

Tai et al.[11]:low rank approximation 2.75 3.10 -0.29%
Kim et al.[12]:low rank approximation 5.22 5.03 -0.5%

vgg16-pruned-group-wise 0 4.0 3.98 +0.46%
vgg16-pruned-group-wise 0 (hardloss only) 4.0 3.98 -0.06%

vgg16-pruned-group-wise 1 5.02 5.85 -1.0%
vgg16-pruned-group-wise 1 (hardloss only) 5.02 5.85 -2.1%

vgg16-pruned-group-wise 2 8.04 10.04 -2.9%
vgg16-pruned-group-wise 2 (hardloss only) 8.04 10.04 -6.1%

degradation, similar result had never been reported before.
In group-wise pruning process, if we set g = 1, our method

is equal to 3D-filter pruning. We find that in our approach,
under the same pruning ratio, pruning 3D-filter directly would
result in a larger accuracy drop but a higher speed-up ratio (ZF-
pruned-group-wise 2: −1.9%/3.13× compared to ZF-pruned-
group-wise 1: −1.1%/2.24×). For ZF-pruned-group-wise 2,
it has only half the channel in each layer of ZF-net which
greatly reduces the layer’s representation power. But owning to
the efficiency of knowledge distillation in the fine-tuning stage,
we can restore its accuracy to the degree that we can tolerate.
Whether to use g = 1 is up to a trade off between the accuracy
and speed-up. Note that for the experiments on VGG16, we
use only g = 1. The reason comes in two parts, one is that
the g = 1 cases were enough to exhibit the efficiency of our
approach compared to other methods, and the other is that it
takes more time to fine-tune the pruned networks obtaining
from g > 1 cases because of our implementation. We leave
the case of g > 1 in VGG16 or even larger networks for future
works.

IV. CONCLUSION

In this paper, we propose a new structured network prun-
ing approach to accelerate convolutional neural network and
explore the knowledge distillation framework in fine-tuning
the pruned network. We introduce a new 2D-filter evaluation
method to locate the pruning candidates in a data driven
way and this method outperform the magnitude based method
significantly. The experiments show that our approach has a
competitive performance compared with previous approaches
on accelerating large CNN models.
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(a) Fine-tuning with soft-loss. “softloss” means fine-tuning without dropout or
data augmentation. “softloss dropout1” means with dropout only and “soft-
loss data-aug” means the soft label is produced online with random crop and
mirror.
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(b) Fine-tuning with both soft-loss and hard-loss. “soft+hardloss” means fine-
tuning without dropout. “dropout1” means traditional dropout and “dropout2”
indicates the proposed dropout method illustrate in Fig 2.

Fig. 5: Loss in the fine-tuning process. “baseline” traditional
fine-tuning approach without soft label.
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